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A behavioral battery modeling approach aimed at large format batteries is the 

topic of this dissertation. Drawing from the development of cell - level electrical 

analogue battery models, the comprehensive modeling approach described here shows 

how to scale a high fidelity battery cell model to a computationally fast battery model of 

large format batteries for system level design and simulation. The accurate behavioral 

battery model is performance - driven and tailored for stringent system simulation 

requirements. A novel bandwidth - based parameter extraction algorithm and advanced 

State of Charge (SOC) - Open Circuit Voltage (OCV) profile identification method are 

presented. While a real-world battery system is non-linear and time varying, a truncated 

representation of the system is provided by a commonly studied non-physical "electrical 

analogue" battery model. However, the limited bandwidth characteristic of the electrical 

analogue battery model is often overlooked. The reported algorithm starts by assessing a 

desired battery application, followed by modeling the battery according to the application 

bandwidth, and then estimating the model parameters using the sequential quadratic 

programming method. This approach recognizes and makes use of the limited bandwidth 
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of the battery model by reconciling the bandwidth of the application into the bandwidth 

of the electrical analogue battery model. 

The model will help in vehicle concept development, and provide an analytical 

tool during the process of selecting the most appropriate battery during system design but 

before a prototype system is built. Another application is to represent the plant in realtime 

model-based battery management and control systems embedded in actual application 

controllers. 

This modeling approach is independent of the battery chemistry and therefore it is 

applicable to lithium-ion, nickel-metal-hydride (NiMH), and lead-acid batteries, among 

others. 
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CHAPTER I 

INTRODUCTION 

1.1 Background & motivation 

Due to concerns for energy and environment [1-3], such as the limited resource of 

petroleum and global warming, a groundbreaking change has arisen in the automotive 

industry towards higher fuel economy, lower emission and enhanced power performance 

[4-8]. In 2007, the transportation sector consumed 71% of US oil consumption. The share 

used by cars, pickups and SUVs was 61% of the transportation sector [9]. By making the 

internal combustion engine (ICE) operate in a more efficient region and taking advantage 

of regenerative braking, hybrid electric vehicles (HEVs) are more fuel efficient and 

environmental friendly [4, 5]. Plug-in hybrid electric vehicles (PHEVs) and fuel cell 

vehicles (FCVs) can make use of renewable energy sources such as wind and solar 

energy to either store the renewable energy in the battery pack, or make hydrogen by the 

renewable energy and then produce electricity from the fuel cell [4, 5, 7, 10]. Therefore, 

it is imperative to have more electric, hybrid and fuel cell vehicles to alleviate the energy 

and environmental problems [4-6, 10]. 

Since the recent re-inception of hybrid electric vehicles in 1999, more than 2 

million HEVs have been sold in the US [11]. However, challenges for designing higher 

performance lower cost HEVs, PHEVs and FCVs exists [5, 8]. One of the major 

challenges is designing a high power, high energy, long life cycle and low weight energy 

storage system (ESS) [6-8, 12, 13] to provide on-board energy to the vehicle’s 

1 
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powertrain. As one of the most promising and widely used components for an ESS, 

batteries are playing an important role in designing an advanced ESS [5-7, 12, 14-18]. To 

reduce the need to build expensive prototypes, high fidelity component models are 

necessary for system level design before making the prototype. Therefore, the need for an 

accurate battery model that is applicable to large format batteries arises among ESS and 

powertrain designers. They need a fast yet accurate battery model which can be easily 

integrated into circuit and system simulation environments such as Matlab/Simulink and 

Cadence/Pspice for system level design and simulation [6, 18-20]. 

1.2 Literature review 

From the usage aspect, battery models can be used in two ways: on-line and off-

line. An on-line battery model is used when instantaneous measurements of battery 

current and terminal voltage are fed into the model to estimate the internal state 

variables—most importantly, the battery state of charge (SOC). Accurate estimation of 

SOC and other parameters can be achieved by using filter technology [21-25]. These 

kinds of battery models are common in on-line estimation systems. The emphasis of these 

models is the filter included in the model, but not the model itself, although the filter does 

rely on the battery models to some extent. On the other hand, an off-line battery model is 

used without new environment inputs, focusing on predicting battery behavior—terminal 

voltage and SOC. The accuracy of these models greatly depends on carefully identified 

model parameters. These kinds of models are mostly used for system level design, such 

as selecting the most appropriate battery modules in simulation before physically 

building a prototype system. In this work, the primary focus is the off-line battery model. 

The on-line application of the same battery model is also investigated in the last chapter. 

2 
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For off-line battery models, there are basically two main kinds of models found in 

the literature: physical models which are mainly electrochemical battery models, and 

behavior models, including mathematical models and electrical analogue battery models. 

There are direct relations between the battery physical parameters and the parameters in 

the electrochemical models [26-31], which usually involve a number of coupled partial 

differential equations. These models are complicated and comprehensive, which yield 

better accuracy than any other type of battery models. They are mostly used by battery 

designers for battery structure and material design. However, the electrochemical models 

are extremely slow in simulation, which make them unsuitable for system level design 

and simulation [32-35]. In the behavior models, there may not be a direct relationship 

between the battery physical parameters and the model parameters. The mathematical 

battery models typically come from empirical or stochastic equations [36, 37]. These 

models are simple and fast in simulation, but they are generally inaccurate compared with 

other types of battery models [32, 34]. In some circumstances they are acceptable for low 

power battery applications with slow dynamics, or when simulation accuracy is not 

strictly enforced. Nonetheless, these models are less acceptable for high power high 

dynamic large format batteries, such as the battery pack in EVs/HEVs/PHEVs, because 

fidelity may rapidly degrade under the heavy dynamic loading imposed on such batteries. 

The electrical analogue battery models [32-35, 38-54] use electric circuit elements 

such as voltage sources, current sources, resisters, capacitors and inductors to represent a 

real battery, although the circuit elements do not physically exist. With several time 

constants associated with the model, it is actually a truncated representation of a non-

linear system. The complexity of the electrical analogue battery models lies between the 

electrochemical models and the mathematical models [32, 34]. Since these models are 

3 
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built based on electric circuit elements, they are inherently suitable for circuit simulation 

software, such as Matlab/Simulink and Cadence/Pspice, and could be easily implemented 

into larger system simulation.  

Various electrical analogue battery models have been built and reported in the 

literature, however, the accuracy of most of the models fall short of the needs of high 

fidelity system level modeling [40, 42, 44], or the procedure to extract the model 

parameters is too difficult [35], or the modeling requires some information about the 

physical parameters that are not available to the general user [41]. What's more important 

is that all battery model developers have largely concentrated on modeling a single 

battery cell instead of a large format battery. A battery modeling procedure intended for 

large format batteries yielding an appropriate fidelity behavioral battery model is not 

available in the literature. 

1.3 Detailed review of related work 

1.3.1 Chen, M. et al: Accurate Electrical Battery Model Capable of Predicting 

Runtime and I-V Performance. IEEE Transactions on Energy Conversion, 

2006. 

In this paper [32], a comprehensive electrical analogue battery model was 

proposed for low power battery cells (Fig. 1.1). It accounts for battery cycling and self-

discharging effect, nonlinear Open Circuit Voltage (OCV) and transient Current -

Voltage (I-V) characteristics. The focus of this paper was to provide an accurate electrical 

analogue battery model of a single battery cell for circuit simulation. The main 

contribution of this paper is that it proposed the topology of the behavioral electrical 

analogue battery model based on previous Thevenin, impedance, and runtime based 

models. It employed a series resistor to be responsible for the instantaneous voltage drop, 

4 
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and two RC networks for short and long time transient responses. The proposed model 

was experimentally verified on a polymer li-ion battery and a nickel-metal-hydride 

(NiMH) battery with accurate results. In the performance tests, maximum terminal 

voltage error was 15 mV - 30 mV for three set of performance tests on the 3.7 V, 850 

mAh, TCL PL - 383562 polymer li-ion battery. The SOC - OCV profile was extracted 

based on the algorithm in [55]. The parameters were extracted using the method in [56]. 

Figure 1.1 The battery model in [32] 

Figure 1.2 shows the estimated parameters for seriesR , , and 
_Transient SC . 

Although the parameters were assumed to be current and SOC 

_Transient SR

dependent, results showed 

that they were close to constant during 20% - 100% SOC. 

5 



www.manaraa.com

 

 

 

   

 

   

  

 

 

  

   

  

Figure 1.2 Extracted parameters in [32] 

However, the limited bandwidth nature of the model was not acknowledged in 

this paper. As a result, the modeling procedure was unaware of the application 

environment. The model was built for a specific battery and considered accurate for all 

applications with the modeled battery. Another drawback of this paper is that the SOC -

OCV profile extraction needs to be improved, as will be discussed in Section 1.3.3. 

1.3.2 Schweighofer, B., K.M. Raab, and G. Brasseur, Modeling of high power 

automotive batteries by the use of an automated test system. IEEE 

Transactions on Instrumentation and Measurement, 2003.  

Aimed at modeling a high power single battery cell, this paper [56] adopted the 

same 2-RC electrical analogue battery model in Fig. 1.3 as in [32]. The focus of this 

paper was the automated test system and the parameter extraction based on the test data. 

The highlight of the paper is the programmable battery test system (Fig. 1.4) that is 

6 
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capable of delivering up to 50 A of charging current and sinking up to 500 A of 

discharging current with a maximum continuous power dissipation of 400 W. 

Figure 1.3 The battery model in [56] 

There was no extraction of the SOC - OCV profile since the proposed procedure 

was intended for extracting the component parameters for a constant SOC. The 

component parameters were calculated based on Fig. 1.5 with (1.1): 

( / )ˆ( ) (1 )Dt

R Du t U U e     (1.1) 

Figure 1.4 The automated test system in [56] 
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Figure 1.5 Voltage response to a discharge pulse [56] 

The proposed method could reasonably extract the parameters for the series 

resistor and the first RC network only when the boundaries for RU and DU can be easily 

identified (Fig. 1.5). However, this is not the case. The boundary for RU varies with 

system sampling rate, which is part of the limited bandwidth nature of the electrical 

analogue battery model. The choosing of the lower boundary for DU is more arbitrary, 

because the open circuit voltage can only be reached after at least 24 hours after charging 

or discharging [55]. For the parameters of the second RC network, the claim "By 

analyzing the remaining part of the current pulse, the values for KR and aKC re calculated 

in a similar way" was vague and of questionable validity. 

The proposed method was verified on a 1.25 V, 9 Ah NiMH battery cell with 

results shown in Fig. 1.6. A large discrepency can be observed between the measured 

data and the model output. The error came from both the inaccurate model parameters 

and the assumption of constant SOC. The way the parameters were extracted in this work 

is inaccurate and needs improvement. This parameter estimation method was also used 

by [32]. 
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Figure 1.6 Voltage response to discharge and charge pulses [56] 

1.3.3 Abu-Sharkh, S. and D. Doerffel, Rapid test and non-linear model 

characterisation of solid-state lithium-ion batteries. Journal of Power 

Sources, 2004. 

In this paper [55], a rapid test procedure was proposed aimed at characterizing 

lithium-ion battery cells. A great contribution of this paper is the fast battery test 

procedure to extract the SOC - OCV profile of a battery cell. A 2-RC network electrical 

analogue battery model was used as Fig. 1.7. Instead of spending 20 days on extracting 

the SOC - OCV profile in the traditional way, one can get this profile in 24 hours with the 

proposed pulse charging and discharging test on a battery cell. 

Figure 1.7 Equivalent circuit model during discharge in [55] 

As illustrated in Fig. 1.8, the battery cell was pulse charged and discharged in a 

cycle with a 1-minute rest period at the end of each pulse. By connecting the lowest 
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voltage points during battery charging and the highest voltage points during discharging, 

the SOC - OCV profile was obtained by making an average of the two dotted lines (Fig 

1.8). 

Figure 1.8 Voltage vs. SOC during the rapid test [55] 

The SOC - OCV profile from the rapid test procedure had been compared with the 

one from the traditional method, which was considered more accurate (Fig. 1.9). A high 

energy lithium-ion battery cell with a capacity of 100 Ah was tested on a Digatron 

universal battery tester. Discrepancies were observed and acknowledged, but the errors 

were considered acceptable and thus no further action was taken. However, the parameter 

extraction for the circuit components was incomplete and further tests were suggested in 

the paper. 
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Figure 1.9 Comparison of OCV obtained from different tests [55] 

1.3.4 Hussein, A.A.-h., N. Kutkut, and I. Batarseh. A Hysteresis Model for a 

Lithium Battery Cell with Improved Transient Response. in Applied Power 

Electronics Conference and Exposition (APEC). 2011. 

A two-RC network equivalent electrical analogue battery model (Fig. 1.10) was 

proposed in this paper [44] intended for a battery cell. 

Figure 1.10 The improved hysteresis model in [44] 
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Terminal voltage was calculated from the discrete time expression: 

( ( ) (sgn)( ))(1 exp( ))k k k

t
y OCV z Ri 




   when 0ki  (1.2) 

( ( ) (sgn) ( ))(1 exp( ))k k k k

t
y OCV z h z f




    when 0ki  (1.3) 

max

max

(sgn) ,  0<t , v
k k vf t T f

T


   (1.4) 

where R is the equivalent internal resistance of the cell, sgn is an operator which is 

negative for discharging and positive for charging, k is a time index, kz is the SOC of the 

cell, ki is the cell's current and ky is the output voltage of the cell model, all at time k. 

Coefficient  is used to improve transient dynamic responses, and kf is an additive 

correction linear function. The function of ( )kh z reflects the hysteresis effect. 

Although the author did not point out the two-exponential or two-RC network 

characteristic of the model, it actually does consist of two exponential moments: one is 

reflected by the 1 exp( / )t   term, and the other one is reflected by the kf term, 

which is the first order Taylor expansion of an exponential term. 

The major drawback of the proposed model is that the transient response was 

poor, because an exponential term in the model was approximated by a first order Taylor 

expansion, which greatly reduced the available model accuracy. Another limitation is that 

the time constant was calculated from Fig. 1.11 by:  

1 1 1exp( ) 0.5%
ln(0.005) 5.3

t t t




 
    (1.5) 
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Figure 1.11  Cell's dynamics during discharge  [44]  

t1: transient on/off time;  t2: steady-state on time; and t3: steady-state off time [44]  

However, the choice of and 6V to calculate  was arbitrary, as a result of being 

aware of the limited bandwidth n

5V

ature of the model. Other drawbacks of the model 

include the inaccurate way that the SOC - OCV profile is extracted, using only one 

exponential when 0ki  , and the coefficient  was obtained by manual curve fitting. As 

a result of the above drawbacks, the battery cell model was rather inaccurate compared to 

other similar models when verified on a 1.1 Ah lithium-ion phosphate battery cell (Fig. 

1.12) in the authors' own report. 
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Figure 1.12 Battery voltage response during charge and discharge [44] 

1.3.5 Zhang, J., et al. An enhanced circuit-based model for single-cell battery. in 

Applied Power Electronics Conference and Exposition (APEC). 2010. 

In this paper [42], an electrical circuit battery cell model based on [32] was 

proposed (Fig. 1.13). The major difference between the new model and the original 

model was the introduction of the variable capacitor representing battery capacity on the 

left part of the model. The variable capacitor was introduced to take care of the so-called 

battery remaining capacity "recovery effect", which is basically the nonlinear variation in 

battery available capacity with charge or discharge current. 

Figure 1.13 The reported model in [42] 
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In the proposed model, battery SOC was calculated as: 

( , , , , ) ( , , , )A C C

s e s eI L t t I F L t t  
2 2 2 2( ) ( )

2 21
( , , , ) 2

s em L t m L t

s e s e m

e e
F L t t t t

m

 




   





   

1
A

f
SOC

c


 

(1.6) 

(1.7) 

(1.8) 

where A is the accumulated capacity during time period [ ,  s et t ]; fc is the full capacity; 

function ( , , , )s eF L t t  is related to the recovery effect. 

In the reported work, no detailed parameter extraction procedure was provided. 

Although the proposed model incorporating the recovery effect was intended to improve 

the model dynamic response, when it was verified on a 3.7 V, 2.6 Ah lithium-ion battery 

cell, 20 mV max voltage estimation error was observed (Fig. 1.14), which was close to 

the error reported in [32]. Therefore, the proposed method to improve the dynamic 

response of the original model is unsuccessful. 

Figure 1.14 Battery model validation at variable loads [42] 
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1.4 Contributions 

The proposed modeling procedure aims at modeling a large format battery - a 

battery module as a whole instead of a single cell. In this case the cell balancing, cell 

discrepancy and scaling issues are already captured in the modeling process. Thus the 

module-based battery model is readily integrated into larger systems for system level 

design and simulation, i.e., selecting the most appropriate battery modules for an ESS. A 

real battery system is non-linear and time varying. In the proposed research, a truncated 

representation of the system is reflected by a common non-physical behavioral battery 

model. The battery modeling procedure that is the subject of this research starts with a 

desired battery application environment, followed by modeling the battery according to 

the application bandwidth, and then estimating the model parameters using Sequential 

Quadratic Programming (SQP). This approach recognizes and makes use of the limited 

bandwidth of the battery model by reconciling the approximation with the limited 

bandwidth required by the simulation. The uniqueness of the proposed work is that it is 

aimed at large format batteries - a battery module instead of single battery cells, which 

embraces more engineering significance because battery modules are the ones that are 

widely available in the market and could be readily put together to build larger battery 

systems, i.e. the energy storage system in EV/HEV/PHEV. The battery model, which is 

represented by electrical circuit components, can be easily integrated into simulation 

environments such as Matlab/Simulink and Cadence/Pspice. 

The major contributions of the proposed work are summarized as: 

1. A high fidelity electrical analogue battery model was selected for large 

format batteries 
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2. A novel performance-driven, application-aware modeling technique was 

proposed for large format battery modeling 

3. A novel bandwidth-based parameter extraction algorithm for the battery 

model was established 

4. A method of rapid extraction of high accuracy SOC - OCV profile was 

established 

5. The robustness of the characterized model was verified 

6. Scalability of the battery model to battery packs and to higher order of 

approximations was examined 

1.5 Dissertation Organization 

This dissertation is organized as follows. Chapter II introduces the electrical 

analogue battery model for large format batteries. Chapter III describes the proposed 

bandwidth-based parameter estimation algorithm. Chapter IV explains the rapid 

extraction of accurate battery SOC - OCV profile. Chapter V shows the experimental 

apparatus and results of the proposed large format battery modeling technique on 

Ultralife 14.4 V, 6.8 Ah lithium-ion battery modules. The robustness of the constructed 

battery model from one battery module was tested on four battery modules of the same 

kind. Chapter VI describes the scaling of the electrical analogue battery model to the 

battery pack on Mississippi State University EcoCAR - a 360 V, 21.3 kWh battery pack 

assembled from modules made by A123, Inc. Chapter VII shows the scaling of battery 

model from 2-RC networks to 3-RC networks. Chapter VIII discusses the capability of 

the electrical analogue battery model to be used on-line for battery SOC estimation after 
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the model parameters are extracted based on the proposed modeling method. Chapter IX 

concludes this dissertation. 
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CHAPTER II 

THE ELECTRICAL ANALOGUE BATTERY MODEL 

2.1 Overview 

A well-recognized electrical analogue battery model [32, 42, 44, 55, 56] for 

lithium-ion batteries is drawn as Fig. 2.1. It includes two parts: The left part is the state of 

charge estimator, which estimates battery SOC based on coulomb-counting; the right part 

- electric circuit part is the circuit representation of the electro-chemical battery system 

which could be directly integrated into circuit simulation software such as 

Matlab/Simulink and Cadence/Pspice. The bridge of these two parts is the SOC - OCV 

mapping - a unique relationship between battery charge level and internal voltage 

potential. 

Rs

Battery 

Terminal

+

_

Open Circuit 

Voltage
State of Charge 

Estimator

SOC-OCV

 Mapping

…
…

R2 Rn

C2 CnC1

R1

222 CR
111 CR nnn CR

N Sets of RC Networks

Figure 2.1 The electrical analogue battery model 
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2.2 State of charge estimation 

In the battery model, battery terminal voltage is a reflection of the battery open 

circuit voltage, internal resistance, and transient effects caused by charging or 

discharging current. By measuring battery terminal current, the SOC could be estimated 

by coulomb-counting method from (2.1) if the initial SOC is known. If the initial SOC is 

not known but the battery has been left rest for a long time (more than 24 hours), initial 

SOC can be estimated from the SOC - OCV mapping in a reverse direction by measuring 

the initial battery terminal voltage (the battery terminal voltage is supposed to reach OCV 

after 24 hours [55]). Otherwise recursive estimation algorithms should be adopted to get 

an initial estimate of the SOC [23, 57, 58]. Once the battery SOC is known, battery open 

circuit voltage can be found from the SOC - OCV mapping. 

0

( )

(0)

t

i t dt

SOC SOC
C

 


(2.1) 

2.3 Circuit representation of the real-world battery 

On the circuit part of the model (the right part), instant voltage change is reflected 

by the voltage on sR . The N sets of RC networks are employed to represent the dynamic 

responses of the electro-chemical process caused by charging or discharging current with 

time constants 1 2, , , n   . The RC networks are truncated exponential representations of 

a non-linear system, which is a common engineering problem that widely exists in many 

areas [59, 60]. Although electric circuit components are used in this model, the model 

does not physically represent batteries, but a behavior representation of them. 

The term ―electrical analogue battery model‖ is introduced here as to emphasize 

the fact that although electric circuit components are used in the battery model, they do 

not physically (analog) represent the real-world battery, but a behavioral (analogue) 
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3 

representation. Otherwise, people may interpret the term ―electrical battery model‖ as 

―electrical analog battery model‖. 

2.4 Limited bandwidth nature of the model 

Since networks are used in the circuit part of the battery model, the electrical 

characteristics of the RC networks are embodied in the battery model. One important 

characteristic of the RC networks is that they have limited bandwidth. Taking the first RC 

network as an example, the natural response of the RC network is: 

1 1

 

1 1( ) (0)

t

R CV t V e


 (2.2) 

The voltage across the RC network will decrease to 5% of the original voltage in 

1 (where 1 1 1R C  ). Thus transient responses longer than several times will not be 

adequately approximated by this RC network. In general, the bandwidth of t



he electrical 

analogue battery model is limited to [ max1/ , min1/ ]. 

Another bandwidth limiting factor of the model is the sampling frequency. For 

example, if the sampling frequency of the battery test is 1 Hz, then battery dynamics 

faster than 0.5 Hz will not be accurately modeled. In other words, the battery model built 

on a particular sampling frequency is not supposed to be used in a simulation with shorter 

computational time steps because of the possibility of aliasing. 

The limited bandwidth nature is of vital importance to this behavioral electrical 

analogue battery model because an accurate model will turn out to be inaccurate if used 

in an environment that is different from the environment that the model was built for. 

Since a real-world battery is a continuous nonlinear system which involves 

complex reactions between anode and cathode, if exponential terms are used to 

approximate the battery behavior, there should be no natural exponential moments as a 
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result of the nonlinearity. The commonly used electrical analogue battery model (Fig. 

2.1), which is used in many papers to model batteries in different formats and different 

chemistries, is actually a truncated multi-term exponential approximation. Thus there are 

no natural time constants in these models. A decision should be made to the time 

constants of the battery model based on users’ preferences. This part of the electrical 

analogue battery model is ignored in most scenarios. Instead, much work has been done 

seeking the natural moments for the exponential terms [40, 61, 62], where the model 

parameters including the time constants that define the bandwidth of the battery model 

were estimated as giving the ―best fit‖ of an arbitrary load stimulus for a battery test. 

Large modeling errors were reported in these papers compared to those of the reported 

work here. The authors’ research reveals that when the bandwidth of the model is 

determined based on the bandwidth of the battery application, the highest fidelity can be 

achieved for the electrical analogue battery model. In short, the bandwidth of the battery 

model is chosen as the bandwidth of the actual battery application in the proposed work. 

2.5 Thermal prediction of the battery model 

Battery temperature can be calculated dynamically based on the thermal energy 

balance [33] as: 

2( )
( ) [ ( ) ]p c s a

dT t
m C i t R h A T t T

dt
        (2.3) 

Where 

m

pC

: Battery mass (kg); 

: Battery heat capacity (J/kg/K); 

( )T t

( )i t

: Battery temperature ( ); 

: Battery current (A); 
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R

ch

: Battery internal resistance ( ); 

: Battery heat transfer coefficients (W/ /K); 

sA

aT

: Battery surface area ( ); 

: Ambient temperature. 

The heat power terms include resistive heating and heat exchange to the ambient. 

Other possible heat generations have been ignored as a compromise for high speed 

simulation. 

In Fig. 2.2, the thermal equation is implemented into Matlab/Simulink block to 

give the battery temperature estimation. 

T

1
Weight

Bweight

Surface area

Surfarea

Subtract 1

Subtract

Square

u
2

R

R

Product 2

Product 1

Initial battery temperature

initT

Heat transfer coefficient

Htc

Heat capacity

HC

Divide

Discrete-Time

Integrator

K Ts

z-1xo

Ambient Temperature

ambT

In1

1

Figure 2.2 Battery temperature estimation in Matlab/Simulink 

2.6 Battery temperature effects on usable capacity 

There is a non-linear relation between battery usable capacity and battery 

temperature. Within a limited range, the higher the battery temperature, the larger the 

battery usable capacity will be. When we implement this relation into the calculation of 
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SOC of batteries by adding a temperature factor coefficient [33], the calculation of SOC 

can be changed instantaneously as the temperature changes. Fig. 2.3 shows the 

temperature factor – temperature relation. 

Figure 2.3 Temperature factor - temperature relation 

Although the battery model is capable of predicting battery temperature as 

described in Section 2.5, and the battery capacity dependency on temperature is 

investigated in Section 2.6, these two parts were not included in the electrical analogue 

battery model for parameter estimation and experimental tests in the following parts of 

this dissertation. For the experimental battery tests discussed in this dissertation, the 

tested battery modules and the battery pack were well-cooled, with very limited 

temperature fluctuation noticed. 

Besides the temperature effects, the electrical analogue battery model is also 

capable of working with battery aging effects by introducing aging-related coefficients to 
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the model parameters. The aging effects [63-67] on the battery model are beyond the 

scope of this dissertation and thus not discussed here. 

2.7 A typical battery transient response 

A typical battery transient response during a discharge pulse is shown in Fig. 2.4, 

which includes 5 parts: (1) instantaneous voltage drop after discharging current is applied 

to the battery, which is reflected by the voltage change on sR ; (2) transient period 

dominated by 1 and 2 ; (a two RC network electrical analogue battery model is 

assumed in this case); (3) transient period dominated by 2 1 < 2 ), because 

vanished after a short period; (4) instantaneous voltage ris

( 

e after discharging current is 

turned off, which is reflected by the voltage change on sR ; (5) transient period dominated 

by 1 and 2 during the rest period. 

1
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Figure 2.4 Battery transient response during discharge 

Although we recognize the effects of each circuit parameter on approximating 

battery dynamic responses, all the data points in the behavior battery test are taken as a 

whole while using SQP for parameter estimation. 
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CHAPTER III 

PARAMETER ESTIMATION 

3.1 Overview 

The proposed work flow of the large format battery modeling is summarized as 

Fig. 3.1. The parameter estimation algorithm should be designed to accommodate the 

limited bandwidth characteristic of the electrical analogue battery model [68]. It is 

necessary to investigate the battery application prior to constructing the model. The 

bandwidth of the battery application will determine the bandwidth of the battery model, 

which will in turn fix the time constants of the RC networks. Two battery tests should be 

conducted for the modeling purpose, one is for the SOC - OCV profile extraction, and the 

other one is for the circuit parameters estimation. After the battery tests, the SOC - OCV 

profile and circuit parameter can be obtained based on the proposed approach. The last 

step is model verification, where the completed battery model will be tested with 

different loads. The steps are discussed in detail next, with the SOC - OCV profile 

extraction discussed in Chapter IV. 
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Figure 3.1 The proposed battery modeling workflow 

3.2 Model bandwidth and the number of RC networks 

If the bandwidth of battery application is [ ,  ]low highf f , then the smallest and the 

largest time constants of the RC networks in the battery model should be selected as 

min 1/ highf  and max 1/ lowf 

min max[ ,  ]  should be determined based on the fidelity requirement of the model. If a 

. The number of RC networks with time constants between 

simple model with the least computational burden is desired, the number of RC networks 

can be two. If fidelity of the model is the first concern, the number of RC networks can 

be larger than two (e.g., 3 or 4 or N). 

3.3 Circuit parameter estimation 

3.3.1 Behavior battery test 

To estimate the circuit component parameters, a behavior battery test with 

frequencies close to [ ,  ]low highf f should be conducted for parameter estimation. This test 

data can also be taken as measurements on the actual battery in an application over a 

period of time in service. The choice of load stimulus is arbitrary as far as it has sufficient 

frequency components within the model bandwidth to adequately excite the battery. 

The term ―behavior test‖ as defined here is when the measured battery terminal 

current and terminal voltage are known to the battery model for the purpose of parameter 
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estimation. Later, the term ―performance test‖ will be introduced when only the measured 

terminal current is known to the battery model. The measured terminal voltage is kept 

unknown to the battery model to judge the model accuracy by comparing the measured 

terminal voltage with the model output voltage. Thus, a performance test tracks the open-

loop accuracy of the battery model. 

3.3.2 Mathematical description of the model 

A two-RC network representation of the battery model is the current level of 

approximation commonly found in similar advanced work and was thus also selected for 

this work as illustrated in Fig. 3.2. In Chapter VII it will be shown that this modeling 

approach can be extended beyond order two using the methods reported in this work. The 

mathematical equations for the two-RC network are derived as (3.1) and (3.2): 

•

1 1 1 1
1

•

2 2

2 2 2

1 1
- 0 0

1 1
0 - 0

0 0 0 1

c

c

c c t

R C CV
V

V V i
R C C

SOC
SOC

C

   
     
      
             
       
     
     

   

1 2( )t ocv s t c cV V SOC R i V V   

(3.1) 

(3.2) 

where 
1 2,  ,  c cV V SOC are capacitor 1 2,  C C voltages and battery SOC, respectively. The 

parameters which need to be estimated are 
1 1 2 2,  ,  ,  ,  and sR R C R C . Battery capacity C in 

(3.1) is assumed to be a constant. Battery open circuit voltage ( )ocvV SOC is an eighth-

order polynomial equation in SOC representing the SOC - OCV mapping. 
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Figure 3.2 The battery model with two RC networks 

3.3.3 Sequential Quadratic Programming 

Sequential Quadratic Programming (SQP) is used for parameter estimation. The 

objective function is formed as the error between the measured battery terminal voltage 

from the behavior test and the model terminal voltage output with the behavior battery 

test current as load stimulus. And then SQP is used to minimize the objective function by 

varying the circuit parameters 
1 1 2 2,  ,  ,  ,  and sR R C R C . 

Define: 

1 1 2 2[     ]T

sZ R R C R C (3.3) 

The minimization problem is summarized as: 

Minimize: 

2

1

( ) ( )
n

i i

t mea t sim

i

f Z V V 



  (3.4) 

Subject to: 

1 1 1 1

2 2 2 2

1 1 2 2

( ) 0

( ) 0

, , , , 0s

h Z R C

h Z R C

R R C R C





  

  



(3.5) 

where i

t meaV 
and i

t simV 
are the measured battery terminal voltage and estimated battery 

terminal voltage, respectively. 
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The Lagrange function is formed as 
2

m m

m=1

L(Z) = f(Z)+ h (Z) (3.6) 

where m representing the Lagrange multiplier associated with equality constraint mh . 

Let k kd Z  be a 5-dimentional search direction vector, and then the quadratic 

programming sub-problem at a specific design point is formulated [69, 70] as, 

Minimize: 

( , ) ( ) 0.5( )k k k T k k T k kQ d Z f Z d d B d  (3.7) 

Subject to: 

( ) ( ) 0 1,2k k T k

m mh Z h Z d m   (3.8) 

where kB is a positive definite matrix used to approximate the Hessian of the Lagrange 

function ( )L Z . 

This is a typical SQP problem that could be solved using the standard SQP 

algorithm [69, 70]. The optimum solution to this SQP problem is the optimum Z, which 

represents the optimum circuit parameters. 

The main advantage of the proposed algorithm over other parameter estimation 

algorithms is that during the parameter estimation process, the time constants of the RC 

networks are kept constant, because they are the preferred approximations that fit the 

bandwidth of the battery application. This reduction in the number of degrees of freedom 

removes a source of poor conditioning on the estimation process, which was found to 

improve the selectivity of the remaining parameter estimations. 
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CHAPTER IV 

SOC - OCV EXTRACTION 

4.1 Overview 

An accurate SOC - OCV profile is a key factor for achieving a high fidelity 

electrical analogue battery model. A two-step process has been established to get the best 

estimate of the SOC - OCV profile in a short period. The traditional way of obtaining the 

battery SOC - OCV profile is inefficient and time-consuming. As the battery transients 

are supposed to vanish after a 24 hour period, to get multiple points on the SOC - OCV 

profile, several weeks are needed to complete the test. A rapid test procedure [55] has 

been developed to accelerate the process, however, as the author pointed out, the 

accuracy of the extracted SOC - OCV profile needs to be improved for use with higher 

fidelity models. 

The proposed algorithm of extracting the SOC - OCV profile includes two steps: 

the rapid test procedure was used to develop an initial estimate of the battery SOC - OCV 

profile, and then four points on the SOC - OCV profile were tested with longer rest 

periods to get an improved measurement of the true OCV at those points, which was 

further used to correct the initial estimate of the SOC - OCV profile from the rapid test. 

In this work, the proposed algorithm has been proven to be an accurate and efficient way 

to extract the SOC - OCV profile. 
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4.2 Initial extraction of the SOC - OCV profile 

A battery pulse charging/discharging cycle is required for the SOC - OCV profile 

extraction. As illustrated in Fig. 4.1, the battery was pulse discharged from full SOC to 

about 10% SOC and then pulse charged back to full to extract the SOC - OCV profile 

[55]. The SOC test range of [10%, 100%] was selected to embrace the normal battery 

operating ranges without the risk of causing irreversible changes to battery physical 

structures by overly deep discharging. The pulse length was chosen to discharge or 

charge the battery by 10% SOC, while allowing the battery to rest for 1 min between 

each pulse to catch the battery dynamics during relaxation. The battery was allowed to 

rest for 24 hours between discharging and charging. 

Figure 4.1 Behavior battery test for SOC - OCV profile extraction 

Figure 4.2 shows the initial extraction of the SOC - OCV profile based on the 

cycle charge/discharge test. The ending points of the rest periods from the charging test 
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were connected with the green dotted lines, and the ending points of the rest periods from 

the discharging test were connected with the blue dotted lines. An average of the green 

line and the blue line was shown as the red line to represent the initial extraction of the 

SOC - OCV profile. 

Figure 4.2 Initial extraction of the SOC - OCV profile 

4.3 Correction of the SOC - OCV profile 

A major improvement compared with the method in [55] is that after the initial 

SOC - OCV extraction, this profile was further corrected with another pulse 

discharging/charging with several long rest periods (24 hours) during the test cycle (in 

the behavior tests the rest period was 1min). By letting the battery rest for 24 hours, we 

were seeking to get the true battery open circuit voltage, as all the battery transients were 

supposed to vanish within 24 hours [55]. 
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Figure 4.3 shows the correction of the SOC - OCV profile based on a new test 

profile with four longer rest periods. Four points were chosen to correct the SOC - OCV 

profile at about 25%, 50%, 75% and 100% of SOC. The battery module was allowed to 

rest for 24 hours after each pulse charge/discharge. This test started with discharging 

(battery was charged to full and leftover for 24 hours before discharge) and ended with 

charging back to full state of charge. The same criteria was adopted to charge the battery 

to full both before the test and at the end of the test, however, the final SOC went beyond 

100% by 1% based on the coulomb-counting for two reasons: 1) The battery was not 

fully reversible, especially in the high SOC range, which made the coulomb-counting 

method of calculating the SOC inaccurate. 2) There were measurements noises that had 

not been taken into account. 

Figure 4.3 Correction of the extracted SOC - OCV profile 

35 



www.manaraa.com

 

 

 

      

     

     

 

   

     

 

 

 

 

The battery terminal voltage was supposed to reach the open circuit voltage after 

24 hours [55], and hence reach the red line in Fig. 4.3 if the red line could accurately 

represent the battery OCV. As we notice from Fig. 4.3, the ending points of the rest 

periods failed to lie exactly on the red line, and thus the SOC - OCV profile extracted 

from the three behavior tests should be corrected accordingly, which was represented as 

the black curve in the figure. The point at about 14% SOC was not used to correct the 

SOC - OCV profile because the rest periods at that point were only two minutes 

altogether. 
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CHAPTER V 

EXPERIMENTAL APPARATUS AND RESULTS 

5.1 Experimental apparatus 

The battery experimental apparatus is shown in Fig. 5.1 with a corresponding 

block diagram illustrated in Fig. 5.2. The power source is a Sorensen SGI 60-V/500-A 

programmable power supply. The load is a Sorensen M540071-01 SLM 60-V/60-A 300-

W DC Electronic Load. The shunt is a 5-mΩ resistor rated for 10 A. The current is 

calculated from the shunt voltage divided by the shunt resistance; the battery voltage is 

measured from the battery terminals. The data logger is an Agilent 34970A Data 

Acquisition/ Data Switch Unit. The battery in Fig. 5.1 is an Ultralife UBBL10 lithium-ion 

battery module. The battery voltage and current are measured at the battery terminals. 

Figure 5.1 Experimental apparatus 
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Figure 5.2 Block diagram of the experimental apparatus 

The resolution of the data logger is 6.5 points. For the Ultralife UBBL10 lithium-

ion battery (nominal voltage: 14.4 V) test, the voltage measurement accuracy is 

calculated [71] as 0.888 mV; the current measurement accuracy through the shunt is 

calculated [71] as 0.79 mA. 

5.2 The Ultralife UBBL10 lithium-ion battery module 

The proposed approach was experimentally verified on 6.8 Ah Ultralife UBBL10 

lithium-ion battery modules as shown in Fig. 5.3. It has two sections, which can be 

configured in series or parallel form. In this test one section is used with a nominal 

voltage of 14.4 V [72]. The voltage range for each section is 10 V – 16.5 V. In each 

section, there are 3 battery cells in parallel and four cells in series. So altogether there are 

12 cells in each section. The battery cell is Panasonic CGR18650 cells with a nominal 

voltage of 3.6 V and a standard capacity of 2450 mAh [73]. The cathode is made with 

lithium cobalt oxide; the anode is made with carbon [74]. A smart circuit was built in the 

battery module for cell-equilibration and protection. The battery module came with a 

SOC indicator on top of the battery module, which was not used by the author. The 

configuration and material information of the battery module is provided here to the 

reader for reference only, as the detailed electro-chemical reactions is beyond the scope 
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of this dissertation. The proposed modeling approach focuses on the battery external 

characteristics at the system level. 

Figure 5.3 The lithium-ion battery module 

In this chapter, four Ultralife UBBL10 lithium-ion battery modules of the same 

age were used for tests, numbered as #1, #2, #3, and #4. These four batteries were in the 

same condition - they had been left on the shelf for 2.5 years with good maintenance. The 

battery model was built on #1 based on behavior tests, and then the completed model was 

verified on #1, #2, #3, and #4 with same performance tests. All the tests were conducted 

in room temperature. Results verified that the battery model built on battery module #1 

was accurate when tested with performance tests, and it was robust enough to be used to 

represent other battery modules of the same kind. It was also shown that the module to 

module variation is less than the cell to cell variation, as a result of cell averaging. 
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5.3 Parameter extraction 

Battery module #1 among the four modules was used for parameter extraction in 

this part. 

5.3.1 Model bandwidth and number of RC networks 

Since the 2-RC representation of the battery is the current complexity level 

commonly used in other works, the number of RC networks is chosen as two for 

comparison purposes with this work. For illustration purposes, the time constants of the 

2-RC network are pre-determined as , which are assumed to have 
1

60 s  and 
2

2100 s 

been determined to accommodate the bandwidth of the battery application. A detailed 

spectral analysis of battery application for time constants determination can be found in 

Chapter VI for the A123 battery pack used in a PHEV. 

5.3.2 SOC - OCV profile extraction 

The battery SOC - OCV profile was extracted from the battery experimental test 

as discussed in Chapter IV. The result is an 8th degree polynomial equation correlating 

battery SOC and OCV as: 

8 7 6 5 4 3

8 7 6 5 4 3

2

2 1 0              

ocvV a SOC a SOC a SOC a SOC a SOC a SOC

a SOC a SOC a

     

  
(5.1) 

The coefficients for the polynomial equation are shown in Table 5.1. 
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Table 5.1 Equation coefficients for SOC - OCV profile 

a8 98.2484 

a7 -466.09 

a6 960.925 

a5 -1111.5 

a4 761.716 

a3 -291.93 

a2 50.7016 

a1 1.14153 

a0 13.3044 

5.3.3 Circuit parameter estimation 

A behavior battery test was conducted on battery #1 for circuit parameter 

identification, as shown in Fig. 5.4. As the name ―behavior‖ indicates, the battery test 

was designed to sufficiently excite the battery with different working conditions, which 

includes five parts. In part one, the tested battery was discharged from full SOC to 70% 

SOC with 3 A constant current for 40 min. This allows the pulse charging/discharging 

tests range between 50% - 70% SOC, which represents the desired battery normal 

operating range. This desired SOC operating range should be accommodated to specific 

application. In part two, the battery was pulse discharged and charged with 1 A, 1.5 A, 2 

A and 2.5 A currents. The length of the pulse was 12 min and the rest period was 1 min. 

The length of the pulse should be chosen based on the bandwidth of the application. Rest 

periods of 1 min were used to characterize the battery natural behavior while there was 

no external current excitation. In this part, the battery was discharged from 70% to 50% 

SOC and then charged back to 70% SOC. In part three, interleaving pulse discharging 

and charging current were used with 5 min pulse length without rest periods. The currents 

used were 1 A, 1.5 A, 2 A and 2.5 A. This part represents faster dynamics than the 

dynamics in part two. The pulse length should also be altered to accommodate the actual 

41 



www.manaraa.com

 

 

  

   

  

   

   

 

 

 

  

 

 

battery application bandwidth. In part four, gradually increasing current from 1 A to 3 A 

and constant 3 A current were used to charge the battery, until the terminal voltage 

reached the voltage limit of 16.6 V, which is defined in the datasheet. This step represents 

a different battery usage condition than part two & three. After battery terminal voltage 

reaches this voltage, the battery charging went to voltage controlled mode. In part five, 

the battery was charged with controlled voltage of 16.6 V, until the current tapers to 300 

mA, which is the full SOC defined in the datasheet. This represents the voltage controlled 

operating mode of the battery application. 

Figure 5.4 Behavior test current 

With the proposed parameter estimation algorithm, the parameters were estimated 

as shown in Table 5.2. The nature of the battery model explains why the capacitor values 

are too large to be practical. Although physical components are used the electrical analog 
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circuit, these components have no physical values because the battery model itself is not 

a physical based model, but a behavior based model. With the estimated parameters, the 

model output voltage was compared with the measured battery terminal voltage, as 

shown in Fig. 5.5. Although the battery terminal voltage estimation is accurate with the 

completed battery model, this comparison will not be taken as model verification, as the 

measured terminal voltage was known to the battery model during the parameter 

estimation process. An independent performance battery test is used in next step for 

model verification. As common criteria for battery model accuracy, the rated error was 

calculated as the max error over battery nominal voltage, which was 0.41% in this case. 

Table 5.2 Estimated circuit parameters 

RS (Ω) R1 (Ω) C1 (F) R2 (Ω) C2 (F) 

0.1472 0.0338 1777.8 0.0446 47101 

Figure 5.5 Terminal voltage estimation results 
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5.4 Model verification and robustness tests 

To verify the robustness of the battery model with identified parameters on 

battery #1 with a different test profile, as well as on other battery modules from the same 

batch, a performance test stimulus was designed as shown in Fig. 5.6. The performance 

test current includes five current rates: 1 A, 1.5 A, 2 A, 2.5 A and 3 A, with pulse lengths 

of 5 min and 16 min. This performance test current has similar bandwidth with the 

behavior test current, which is the key to conserve the accuracy from the behavior test to 

the performance test. In reality, the performance test profile, which usually is the actual 

working environment for the batteries comes first, and then behavior battery test is 

designed to sufficiently excite the battery in the bandwidth similar to the working 

environment. The current in Fig. 5.6 is actually the measured current from battery #1 

during the performance test. 

Figure 5.6 Performance test current 
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Figure 5.7 includes all the test currents on battery #1, #2, #3 and #4. In most parts, 

the current from the four batteries overlapped on each other. Although it was intended to 

control the test stimulus to have exactly the same current, there were minor differences in 

the current because of the manual switch of the circuit. The current variations at the end 

of the performance test, while charging the batteries to the full state of charge, reflect the 

battery module variations. Figure 5.8 shows the measured battery terminal voltage during 

the battery performance test with a max voltage difference of 0.17 V (1.2% rated) among 

the four battery modules. 

Figure 5.7 Compare four current profiles 
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Figure 5.8 Compare four voltage profiles 

As an example of the open loop battery terminal voltage estimation results, Fig. 

5.9 shows the results from battery #1. The terminal voltage estimation results from 

battery #2, #3, and #4 are not plotted here, because they are very similar to Fig. 5.9. 

46 



www.manaraa.com

 

 

 

  

 

 

 

  

 

   

   

Figure 5.9 Terminal voltage estimation results 

The statistical errors from open loop battery terminal voltage estimation from the 

electrical analogue battery model with the identified parameters are shown in Table 5.3. 

Battery #1 is the one that was used for parameter identification based on the behavior 

test. The rated error on battery #1 is 0.44%, while the rated errors on battery #2, #3 and 

#4 are 0.42%, 0.37% and 0.36%, respectively. The statistical errors indicate that the 

model accuracy (0.41% error from behavior test) was conserved when the battery model 

with identified parameters was used with a different test profile, or even on other 

batteries from the same batch. Please note that when the same battery model was used for 

all four batteries with the parameters extracted from a single battery module, the terminal 

voltage estimation error (0.36% - 0.44%) does not contradict the measured terminal 

voltage difference among the four batteries (rated as 1.2%), because there were slight 

differences among the manually switched current stimuli (Fig. 5.7). 
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Table 5.3 Model verification results of the four battery modules 

UBBL10 Battery # 1 2 3 4 
2

MSE (1E-4 V ) 5.040 6.748 4.464 5.243 

Mean Error (mV) -8.269 -12.15 -5.131 -5.075 

Max error (mV) 63.9 60.0 53.7 52.4 

Rated error (%) 0.44 0.42 0.37 0.36 

5.5 Discussion 

From the model verification, we can conclude that the proposed battery modeling 

approach can be successfully applied to module-level batteries. The completed electrical 

analogue battery model proved to be highly accurate (less than 0.44% error) for four 

battery modules of the same kind when verified with performance battery tests. 

48 



www.manaraa.com

 

 

 

 

  

 

   

    

  

 

  

 

   

 

 

 

   

 

  

 

CHAPTER VI 

SCALING THE BATTERY MODEL TO A123 BATTERY PACK 

6.1 Overview 

In this chapter, the proposed battery modeling approach was applied to a battery 

pack – an A123 21.3 kWh, 360 V lithium-ion battery pack installed on the Mississippi 

State University (MSU) EcoCAR (PHEV).  A complete model of the A123 battery pack, 

illustrating the modeling process, is explained in this section as an example of a real-

world application of the proposed battery modeling approach. Three sets of battery data 

were acquired for the modeling purpose. One set of data came from a pulse 

discharge/charge cycle on the battery pack (off-vehicle) for the purpose of battery pack 

SOC - OCV profile extraction. The other two sets of data were acquired when the battery 

pack was operated on-vehicle during vehicle drive cycle tests. One of them was used for 

model circuit parameter estimation; the other one was used for battery pack model 

verification. 

In contrast to the common approach of congregating hundreds of battery cell 

models in series and parallel for the battery pack representation, a simple battery model 

was used to represent the whole battery pack without the loss of model accuracy. The 

modeling process involves only the external characteristics of the battery pack; thus 

detailed knowledge of the physical construction of the battery pack or the physical 

parameters of the battery cells are not required for the modeling work. This simple yet 

accurate modeling approach is achieved by imposing the bandwidth of the battery 
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application into the bandwidth of the battery pack model. The reported work enables a 

new level of fast dynamic battery pack simulation with high fidelity. 

6.2 Introduction to battery pack modeling 

An accurate battery pack model is of significant importance for electric-drive 

vehicle drivetrain design and simulation. It was common in the past to see simple 

resistance battery models being used in vehicle simulations or energy storage system 

simulations [75, 76], which in practice would involve fast dynamics in an actual vehicle 

powertrain. In contrast to the view that vehicle system level simulation does not require 

high accuracy of the battery model [36], a high fidelity battery pack model is critical for 

the vehicle simulation because the drivetrain power management, the motor/generator 

control, AC/DC & DC/DC converter design and control [77], the battery pack state of 

power (SOP) management, etc. are highly dependent on the accurate prediction of the 

battery power and battery SOC. Difficulty in achieving this accuracy results from the fast 

dynamics of the battery current when the battery pack is used in a real-world electric 

drive vehicle, e.g., EV, HEV, and PHEV. As a result, these simple models were not 

capable of predicting the dynamic responses of the battery pack, which could invalidate 

the whole simulation. 

Battery packs usually consist of hundreds of battery cells connected in series and 

parallel, including some battery packs that are made up of several battery modules, and 

each battery module includes several battery cells in series, parallel, or series-parallel 

configuration. Much battery modeling work has been reported at the battery cell level 

[32, 33, 42, 44, 55, 56], with little work reported in the literature discussing the battery 

models at the battery pack level, leaving the cell model to pack model integration work to 
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the system level designer or power electronics designers who do not have the expertise in 

batteries. Going from battery cell model to battery pack model is not simply congregating 

cell models to make a pack model, because in this way not only will it tremendously 

introduce unnecessary computational power requirement to the system, but also some 

phenomena that can only be observed in the battery pack level are ignored [78]. 

Significant fidelity loss will occur if not enough attention is paid to the battery pack 

behavior, as opposed to cell-level modeling only. Thus it is inevitably necessary to 

investigate the construction of battery pack model separately with the cell model. 

6.3 Review of battery pack modeling approaches 

Currently, there are three approaches for battery pack modeling available in the 

literature. The first approach is the method of congregating cell models in series and 

parallel to represent the battery pack model [34, 79]. This approach requires a minimal 

level of analytical effort going from the cell model to pack model, as the only required 

information to generate a model is the cell configuration of the battery pack. However, 

serious fidelity loss may be found in the battery pack model, as a result of ignoring the 

effects due to cell discrepancy, thermal unbalancing in the battery pack, etc. In reality, 

not all battery cells found in battery packs are directly available to the actual system 

designers for battery cell modeling. 

The second approach is to scale the cell model to a battery pack model with one 

simplified model representing the battery pack [80-82]. In this case, the cell discrepancy 

issues and the phenomena only related to the battery pack are investigated and included 

in the pack model which requires much less computational power than the first approach. 

Compared with the first approach, the second approach is comprehensive and fast in 
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simulation; therefore, it is more suitable for system level design and simulation. 

Nonetheless, the investigation of cell discrepancy and thermal distribution in a battery 

pack requires extensive time and effort, and often the battery cells are not directly 

available to the designers. 

The third approach is building a battery pack model directly on a well-built 

battery pack with a single battery model [61, 62, 83]. In this case, the battery cells 

characteristics and thermal influences on cells are naturally included into the battery pack 

models, as a result of cumulative effects of cell averaging; and at the same time the 

battery model will be fast in simulation requiring the least computational power. Another 

advantage of this battery pack level procedure is that non-idealities that are known to 

exist in battery packs, such as weak cells and interconnection impedances, is captured 

self-consistently at the time the battery pack model is built. This approach does not 

require cell-level details or pack configurations, and some modeling algorithms at this 

level are even independent of battery chemistry. For commercially available battery 

packs, the third approach may be the only possible approach, as in this case the battery 

tests can only be conducted at the battery pack level. Two prerequisites for the third 

approach are that the battery cells must be well balanced with advanced cell balancing 

algorithms, and the battery pack should be cooled with effective cooling methods so that 

the battery pack does not encounter a tremendous temperature increase to ensure the 

safety of the battery pack. In other words, only when a well-designed battery system is 

available can one confidently model the battery pack as a single battery model.  The issue 

of battery cells discrepancy has been discussed in a number of papers and 

communications [80, 84]. A two-step screening process has been proposed in [80] to 
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ensure a stable configuration of a battery pack, and many cell equalization approaches 

and been proposed [75] as well. 

Comparing the three battery pack modeling approach discussed above, the third 

approach which builds a battery pack model directly on a battery pack seems to be the 

most promising one for system level designers. However, large modeling errors up to 

3.1% for this battery pack modeling technique even with moderate real-world test 

environment have been reported in [61, 62, 83]. Obviously, this method has room for 

improvements in terms of high fidelity system level simulations. An advanced direct 

battery pack modeling approach is the subject of this chapter. 

6.4 The A123 lithium-ion battery pack 

The A123 lithium-ion battery pack representing the cutting-edge lithium-ion 

battery technology is shown in Fig. 6.1, where the battery pack is sitting at the back of the 

MSU EcoCAR (PHEV). This battery pack includes five A123 battery modules (Fig. 6.2 

left) connected in series. In each battery module, there are 22 prismatic battery cells (Fig. 

6.2 right) in series and 3 in parallel [85]. So altogether there are 66 battery cells in each 

battery module. Each battery cell has a capacity of 20 Ah and a nominal voltage of 3.2 V. 

A well-designed battery control module is included in the battery module to ensure a 

safety operation of the battery pack. As stated earlier, the detailed configuration of the 

battery module is provided here to the reader for reference only. The proposed modeling 

approach focuses on the battery external characteristics at the system level. 

53 



www.manaraa.com

 

 

 

  

 

   

  

  

 

   

Figure 6.1 A123 battery pack on vehicle 

Figure 6.2 A123 battery module (left) and cell (right) 

6.5 Parameter extraction 

6.5.1 Model bandwidth and number of RC networks 

The battery pack for parameter estimation came from a vehicle drive cycle test 

with the battery pack installed on the MSU EcoCAR. The speed profile of the drive cycle 

test is shown in Fig. 6.3. With the data of the battery pack acquired from the drive cycle 
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test, it is possible to analyze the frequency of the battery application by doing a Fourier 

analysis of the battery terminal current. The battery terminal current, terminal voltage and 

battery SOC during the on-vehicle battery test were shown in Fig. 6.4. A single-sided 

amplitude spectrum of battery terminal current is shown in Fig. 6.5 and 6.6. From the 

spectral analysis of the battery current stimulus, the major frequency components range 

can be identified as from 0.0008799 Hz to 0.02134 Hz. 
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Figure 6.3 Vehicle drive cycle test speed profile 

With the major frequency of the battery application identified, the bandwidth of 

the battery model should be in the same range. Thus the range for the time constants of 

the RC networks should be chosen as [1/0.02134 s, 1/0.0008799 s], which is [47 s, 1137 

s]. The selected time constants determine the bandwidth of the model directly. 

55 



www.manaraa.com

 

 

 

  Figure 6.4 A123 battery pack behavior test profile 
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Figure 6.5 Spectral analysis of the battery current: overview 

Figure 6.6 Spectral analysis of the battery current: close view 
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For simplicity and illustration purposes, the number of RC networks is chosen as 

two; however, this number should increase as the model fidelity requirement increase. In 

this case, the time constants of the RC networks in the battery model are determined as: 

1 47 s  and 2 1137 s  . For example, if a more accurate battery pack model is desired 

with three RC networks, the third time constant can be chosen as 

3 1/ 0.00154 649.4 s s   , which locates between 1 and 2 . 

6.5.2 SOC - OCV profile extraction 

To extract the SOC - OCV profile, an off-vehicle battery pack test has been 

performed in the laboratory as shown in Fig. 6.7. In this test, the battery pack was 

discharged from full SOC with pulse discharging, left to rest for 24 hours, and then 

charged back to full SOC with pulse charging. The discharging and charging pulse length 

was chosen as 15 min, which would charge/discharge the battery pack by about 10% 

SOC. At the end of each charging/discharging pulse, the battery was allowed to rest for 1 

min for relaxation. With the SOC - OCV profile extraction method described in Chapter 

IV, the extracted profile was shown in Fig. 6.8. Because of the limited time and 

resources, no SOC - OCV profile correction step was conducted for the A123 battery 

pack, where the initially extracted profile was used as the final extracted SOC - OCV 

profile. 
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Figure 6.7 A123 battery test for SOC - OCV profile extraction 

Figure 6.8 Extracted SOC - OCV profile for A123 battery pack 
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The extracted SOC - OCV profile was made into a lookup table as part of the 

battery pack simulation model in Matlab/Simulink. In terms of the polynomial 

representation, the coefficients for the 8th degree polynomial equation are summarized in 

Table 6.1. 

Table 6.1 Coefficients for the polynomial equation 

a8 -1.68E+04 

a7 1.03E+05 

a6 -2.53E+05 

a5 3.37E+05 

a4 -2.66E+05 

a3 1.29E+05 

a2 -3.76E+04 

a1 6.10E+03 

a0 -6.58E+01 

(Note: the coefficients are for SOC from 20% to 100%.) 

6.5.3 Circuit parameter estimation 

Table 6.2 Extracted circuit parameters 

Rs (Ω) R1 (Ω) C1 (kF) R2 (Ω) C2 (kF) 

0.0764 0.0776 0.6053 0.0779 14.5982 

The on-vehicle battery pack test data used for bandwidth analysis was used for 

circuit parameters extraction. During this step, the time constants of the circuit 

parameters are pre-determined as [47 s, 1137 s]. The extracted parameters are shown in 

Table 6.2. Figure 6.9 shows the battery pack terminal voltage estimation results with the 

extracted parameters, with the errors shown in Fig. 6.10. The mean error for the terminal 

voltage estimation is 0.52 V. 
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Figure 6.9 Terminal voltage estimation results during behavior test 

Figure 6.10 Terminal voltage estimation errors during behavior test 
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The completed electrical analogue battery model was implemented into 

Matlab/Simulink as shown in Fig. 6.11. This model was integrated into EcoCAR vehicle 

simulation program as the battery pack sub-system. 

Figure 6.11 A123 battery pack model 

6.6 Model verification 

The completed battery pack model with the extracted SOC - OCV profile and 

circuit parameters was verified with a different battery on-vehicle test profile as shown in 

Fig. 6.12. The acquired battery pack data is shown in Fig. 6.13. 
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Figure 6.12 Vehicle drive cycle test speed 

A spectral analysis of this test current stimulus shows that the new test current has 

similar bandwidth of [0.0004957 Hz, 0.01702 Hz] with the battery model ([0.0008799 

Hz, 0.02134 Hz]). With the measured battery pack terminal current as the input to the 

battery pack model, the battery terminal voltage estimation results were plotted in Fig. 

6.14, with the errors shown in Fig. 6.15. For the estimation results, the mean terminal 

voltage estimation error is 0.4112 V. 99.87% of the calculated errors were bounded 

within ±4 V, which was very accurate considering the battery nominal voltage of 360 V. 

The rated error can be calculated as 1.11% of the nominal battery pack voltage. 
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   Figure 6.13 A123 battery pack performance test profile 
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Figure 6.14 Terminal voltage estimation results during performance test 

Figure 6.15 Terminal voltage estimation errors during performance test 
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6.7 Discussion 

The application of the proposed battery modeling approach on an A123 battery 

pack systematically explained the way the proposed approach can be used in real-world 

automotive applications. We can conclude that the proposed battery modeling approach 

can be scaled to very large format battery packs, while maintaining the model accuracy at 

a very low level (less than 1.11% for a 360 V battery pack). We can also observe that 

even when constant model parameters (i.e., not battery current dependent or SOC 

dependent) were used in the electrical analogue battery model, high fidelity could be 

achieved for the model even when there were aggressive current dynamics (up to 237 A). 

Although some researchers have claimed that the parameters should be battery current 

dependent or SOC dependent [32-34, 61], the parameters in the electrical analogue 

battery model can be independent of current and SOC, as a result of behavior modeling of 

a real-world battery instead of a physical representation. 
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CHAPTER VII 

SCALING THE BATTERY MODEL TO 3-RC MODEL 

7.1 Overview 

The electrical analogue battery model with 3-RC networks is shown in Fig. 7.1. 

Compared with the model with the 2-RC network (Fig. 3.2), the only difference is the 

extra RC network. In this chapter, a newer (compared to the ones used in Chapter V) 

UBBL10 lithium-ion battery was used for the experimental tests. 

Figure 7.1 The electrical analogue battery model with 3 RC network 

The battery SOC - OCV profile extraction was performed exactly as illustrated in 

chapter IV, but the circuit parameter estimation was done in two ways: the proposed 

bandwidth based method and the singular value decomposition (SVD) - Prony’s method. 

The results from the two methods were compared. The major difference between the two 

methods is the way the time constants of the RC networks are defined. 
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7.2 Model characterization with the proposed method 

7.2.1 Model bandwidth 

As for the battery model with 2 RC networks the two time constants were pre-

determined as 60 s and 2100 s, a third time constants close to the geometric mean of the 

two time constants was chosen as 350 s. So the time constants for the 3-RC model are: 

1 2 360 ;  350 ;  2100 s s s     . 

7.2.2 SOC - OCV profile extraction 

The battery SOC - OCV profile was extracted from battery experimental test as 

discussed in Chapter IV. The result is an 8th degree polynomial equation correlating 

battery SOC and OCV as shown in Table 7.1. 

Table 7.1 Coefficients for the polynomial equation 

a8 -139.1 

a7 481.664 

a6 -555.94 

a5 123.455 

a4 230.917 

a3 -185.97 

a2 50.1971 

a1 -2.5346 

a0 13.872 

7.2.3 Circuit parameter estimation 

A fully scalable parameter estimation program has been coded based on the 

parameter estimation algorithm discussed in Chapter III. The program can be used to 

scale the battery model to any number of RC networks (the number is set to be 3 in this 

case). Besides SQP, generic algorithm (GA) has also been implemented into the program 
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for the parameter estimation. The SQP algorithm has been implemented in the program 

with parallel computing for fast computation of the parameters. 

The behavior battery test current profile is shown in Fig. 7.2. With the time 

constants pre-determined, the circuit parameters were estimated as Table 7.2 with SQP, 

and Table 7.3 with GA. 

Figure 7.2 Battery behavior test for parameter estimation 

Table 7.2  Circuit parameters estimated with SQP  

Rs (Ω) R1 (Ω) C1 (kF) R2 (Ω) C2 (kF) R3 (Ω) C3 (kF) 

0.1483 0.0216 2.7830 0.0165 21.2570 0.0309 68.0322 

Table 7.3 Circuit parameters estimated with GA 

Rs (Ω) R1 (Ω) C1 (kF) R2 (Ω) C2 (kF) R3 (Ω) C3 (kF) 

0.1386 0.0385 1.5587 0.0014 253.5401 0.0430 48.8872 
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7.3 Model characterization with SVD-Prony’s method 

7.3.1 The SVD-Prony’s method 

With SVD-Prony’s method [59, 60, 86-89], the nonlinear battery transient data 

was approximated by an exponential expression in the form of 

1 2

0 1 2( ) ... nxx x

nf x A Ae A e A e
        (7.1) 

Equation (7.1) includes a constant 0A (the baseline) and n number of exponential. 

The task of the exponential analysis is to determine the ideal number of the term of 

exponentials and further identify the parameters of the exponential terms. Although the 

nonlinear battery transient response cannot be exactly expressed by the exponential 

expression (7.1), the best reasonably fit of the data is searched. The data being used is a 

set of sampled data points of battery terminal voltage during the rest period after a pulse 

discharge. The battery OCV is constant during this period, thus 0A is constant. Figure 7.3 

shows the battery transient response data. The sampling frequency is 1 Hz. 
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Figure 7.3 Battery transient response 

70 



www.manaraa.com

 

 

  

   

 

  

 

 

  

 

  

  

 

 

  
    

   

 

                          

 

 

 

  

  

7.3.1.1 Determine the number of exponential terms by SVD 

The SVD algorithm described in [87] is very robust even with nonlinear data set. 

A criterion for the least acceptable singular value of a well-designed data matrix is 

defined and a recursive algorithm has been developed to identify the ideal number of 

exponential terms for either exponential data or non-exponential data. And this algorithm 

does not require subtraction of baseline. For detailed algorithm please refer to [87]. 

7.3.1.2 Identify the exponential parameters using nonlinear least square Prony’s 
method 

The original Prony’s method for exponential analysis cannot handle multi-

exponentials with the baseline included, which require the elimination of the baseline 

prior to applying the Prony’s method. An assumption for subtracting the baseline is that 

the tail of the decay (for both mono-exponential and multi-exponential) can be 

approximated by a single exponential of the form: 

0 1 1( ) exp( )f t A A t   (7.2) 

A three-point method [60] was adopted to extract the baseline based on (7.3): 

1 0 1 1 0

2 0 1 1 0 1

3 0 1 1 0 1

2

0 1 3 2 1 3 2

exp( )

exp[ ( )]

exp[ ( 2 )]

( ) / ( 2 )

Y A A t

Y A A t t

Y A A t t

A Y Y Y Y Y Y







  

   

   

   

(7.3) 

Since only three data points are needed for the extraction of 0A , the 3 points are 

chosen as the first point, the one in the middle, and the last data point from the battery 

test data. 

The original Prony’s method is a computationally efficient yet accurate way of 

identifying exponential moments in multi-exponential terms. 

By taking i

i e
 

 , equation (7.1) changed into the form of (7.4) 
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0 1 1 2 2( ) ...x x x

n nf x A A A A       (7.4) 

The data points need to be evenly spaced to be used by  Prony’s method. Let x= 0, 

1, 2…N-1, where N is the number of sampled data points. Based on the N sampled data 

points, a set of equations could be formed into (7.5)  [86]:  

1 2 0

1 1 2 2 1

2 2 2

1 1 2 2 2

1 1 1

1 1 2 2 1

...

...

...

     

...

n

n n

n n

N N N

n n N

A A A f

A A A f

A A A f

A A A f

  

  

    



   

   

   

   

(7.5) 

The original Prony’s method uses only 2*n (n is the number of exponential terms) 

data points to identify the parameters. A modified Prony’s method [86] with nonlinear 

least square (NLS) algorithm was used to take advantage of more sampled data points. 

Now with the NLS Prony’s method, all data points can be used for the identification of 

the exponential parameters. 

7.3.2 SOC-OCV profile extraction 

Since the SVD-Prony’s method is only for the circuit parameter estimation, the 

SOC - OCV profile from Section 7.22 was used. 

7.3.3 Circuit parameter estimation 

The rate window from the battery behavior test is defined in Fig. 7.4, which 

includes two parts: a discharge pulse (part one) and a rest period (part two). Since in part 

one, the battery OCV was changing with discharge current, this part cannot be analyzed 

by SVD-Prony’s method because of the time varying constant in (7.1) [60]. A time 

constant of 2100 s has been assigned to the RC network to take care of the long transient 

period in part one. Part two with constant OCV was analyzed by SVD-Prony’s method, 

where two exponential terms has been identified for this part. The time constants for the 
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two RC networks (exponential terms) are identified as 2.1 s and 38.3 s. So the three time 

constants for the battery model are: 1 2 32.1 ;  38.3 ;  2100 s s s     . 

Figure 7.4 Rate window for parameter estimation 

With the time constants defined above, the circuit parameters were estimated with 

SQP and GA based on the behavior battery test profile in Fig. 7.2. Table 7.4 shows the 

estimated parameters with SQP and Table 7.5 shows the estimated parameters with GA. 

Table 7.4 Estimated parameters with SQP 

Rs (Ω) R1 (Ω) C1 (kF) R2 (Ω) C2 (kF) R3 (Ω) C3 (kF) 

0.1325 0.0076 0.2776 0.0371 1.0331 0.0440 47.6980 

Table 7.5 Estimated parameters with GA 

Rs (Ω) R1 (Ω) C1 (kF) R2 (Ω) C2 (kF) R3 (Ω) C3 (kF) 

0.0735 0.0563 0.0373 0.0478 0.8011 0.0435 48.2830 
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7.4 Results comparison and discussion 

A performance battery test was conducted to verify the battery models with the 

parameters in Table 7.2, 7.3, 7.4, and 7.5. The performance test current profile is shown 

in Fig. 7.5. The battery terminal voltage estimation results are compared with the 

measured battery terminal voltage, as shown in Fig. 7.6, 7.7, 7.8 and 7.9, respectively. 

Figure 7.5 Performance test current 
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Figure 7.6 Terminal voltage estimation - proposed method with SQP 

Figure 7.7 Terminal voltage estimation - proposed method with GA 

75 



www.manaraa.com

 

 

 

   

 

 

   

Figure 7.8 Terminal voltage estimation - SVD Prony with SQP 

Figure 7.9 Terminal voltage estimation - SVD Prony with GA 
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The statistical errors of the battery model with four sets of parameters are 

summarized as Table 7.6. 

Table 7.6 Statistical errors of the battery model with 3 RC network 

Methods 
SVD Prony Proposed Method 

GA SQP GA SQP 
2

Mean Square Error (1E-4V ) 4.17 3.69 2.99 4.40 

Mean Error (mV) 2.64 2.57 2.69 4.22 

Max Error (mV) 47.01 50.50 34.10 54.10 

Rated Error (%) 0.33 0.35 0.24 0.38 

For the battery model with 3-RC, the proposed method with generic algorithm 

provides the best accuracy when tested with the performance battery test. The model 

accuracies with parameters estimated from other methods are at the same level. The extra 

accuracy with the ―proposed method + GA‖ comes from the pre-determination of the 

battery model time constants, rather than seeking the natural time constants with the SVD 

Prony’s method. 

Comparing GA and SQP, GA is very slow in computation, which takes two -

three days for parameter estimation, but it is not sensitive to the initial value of the 

parameters because GA does not take initial values. SQP on the other hand, is much 

faster than GA, which takes about 2 hours with parallel computing enabled (four 

computer cores), but is sensitive to the initial values of the parameters. In general, 

although slower, GA is more likely to find the global optimum for the parameter 

estimation problem than SQP. 

As a conclusion, the electrical analogue battery model can be successfully scaled 

to 3-RC network model in two ways: the proposed method and the SVD Prony’s method. 
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However, the SVD Prony’s method cannot work independently, as it suffers from the 

baseline problem which had to be overcome by assigning the third RC time constant. 

Increased accuracy was observed for the 3-RC model over that of the 2-RC model as a 

result of the increased order of approximation. 
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CHAPTER VIII 

ON-LINE BATTERY SOC ESTIMATION 

8.1 Overview 

In this chapter, the electrical analogue battery model was used on-line for battery 

SOC estimation with Gauss-Hermite quadrature filter (GHQF), extended Kalman filter 

(EKF), and unscented Kalman filter (UKF). The SOC estimation results from the three 

filters were compared. Results show the GHQF excels among the commonly used filters 

when used with the high fidelity electrical analogue battery model [90]. 

Battery SOC estimation is a key issue for a battery management system (BMS), 

especially with the rapid development and commercialization of HEVs and PHEVs [21, 

24, 25, 57, 58]. Accurate SOC estimation is crucial to determine the optimal operation 

mode of the PHEV or HEV, so that the best overall performance can be achieved. 

Compared with the batteries in low power applications, i.e., laptops or cell phones, 

batteries in high power applications encounter faster dynamics and more cycles of 

charging/discharging until the battery SOC can be recalibrated [23, 58, 91]. Therefore, it 

is more difficult to get an accurate SOC estimation in high power applications. 

An on-line SOC estimation model runs simultaneously with the actual physical 

battery system, taking measurements such as terminal voltage and current as inputs to 

estimate the internal state variable—SOC. In [57] it is claimed that an accurate battery 

model is not necessary, the inaccuracy of which can be compensated by the observer, 

however, the reported SOC estimation error is up to 3% in [57], which is only at the 
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acceptable level. In other reported works, filters built on more accurate battery models 

can give SOC estimation with less than 2% error [22, 23, 92]. Thus accurate battery 

models are still essential for a filter used as an observer to work with less error. In this 

work, the battery model that the filter is built upon is the high fidelity open loop electrical 

analogue battery model described in Chapter II. 

Several SOC estimation algorithms are available in the literature, including [91] 

discharge test, coulomb-counting, measurement of electrolytes physical properties, open 

circuit voltage, internal resistance, Kalman filters, etc. Among the above approaches, 

coulomb-counting and Kalman filters are the most commonly used methods [57, 58, 91]. 

Coulomb-counting method is open loop based and easy to configure, but it has several 

drawbacks [23, 58, 91]. To begin, the initial battery SOC needs to be known or estimated. 

The error included in the initial SOC value will shift the whole SOC estimation results 

with a bias. Secondly, current loss is not taken into account and thus increases the model 

inaccuracy, because in reality not all measured current accumulates stored or discharged 

accessible chemical energy. Thirdly, battery capacity is assumed to be constant. 

However, actual battery capacity decreases as the battery becomes aged. Finally, there is 

measurement noise that is accumulated during battery operation. Based on the above 

drawbacks, a closed loop SOC estimation algorithm is necessary to compensate the open 

loop SOC estimation errors. 

8.2 Mathematical description of the battery model 

The electrical analogue battery model with 2 RC networks was redrawn here as 

Fig. 8.1. 
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Figure 8.1 The electrical analogue battery model with 2 RC networks 

Based on Kirchhoff's current law and voltage law, a discrete time mathematical 

description of the electrical analogue battery model is derived as (8.1) and (8.2). 
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      

v (8.1) 

where the state variables 1, 1 2, 1,  ,  and c k c k kV V SOC  are capacitor 1C voltage, capacitor 2C

voltage, and battery SOC, respectively. 1 1 2 2,  ,  ,  ,  and sR R C R C are model parameters 

which need to be identified prior to using this model. Constant C represents battery 

capacity. Input 1ki  is the current at time instant 1k  . Parameter 1kv is white Gaussian 

noise with zero mean value and covariance Q . The sampling interval is t . 

, 1 1, 2,( )k ocv k s k c k c k kkV V SOC R i V V    n (8.2) 

where is the measurement noise which is assumed to be white Gaussian noise with 

zero mean 

kn

value and covariance R . 

The mapping of OCV on SOC is reflected by (8.3), where ( )f SOC is an eighth 

order polynomial equation in SOC. 
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, ( )ocv k k
V f SOC (8.3) 

8.3 A review of Gaussian approximation filters 

In this section, two kinds of Gaussian approximation filter: the extended Kalman 

filter and quadrature based Gaussian approximation filters are briefly reviewed. Consider 

a class of nonlinear discrete-time dynamical systems and the measurement equation 

described by: 

1 1( )k k k  x x vf

( )k k k y x nh

(8.4) 

(8.5) 

where ;  n m

k k x R y R , kv and kn are independent white Gaussian process noise and 

measurement noise with covariance 1kQ and kR , respectively. 

8.3.1 Extended Kalman filter 

Given the initial estimate state 0x̂ and covariance 0P , the estimation of states can 

be obtained by the famous EKF. 

Prediction: 

| 1 1| 1
ˆ ˆ( )k k k k  x xf

| 1 1 1| 1 1 1

T

k k k k k k k      P F P F Q

(8.6) 

(8.7) 

where 1kF is the Jacobian matrix of f evaluated at 1| 1
ˆ

k k x . 

Update: 

 | 1 | 1

T T

k k k k k k k k k  K P H H P H R

| | 1 | 1
ˆ ˆ ˆ( ( ))k k k k k k k k   x x K y xh

 | | 1k k k k k k P I K H P

(8.8) 

(8.9) 

(8.10) 

where kH and kK are the Jacobian matrix of h evaluated at 
| 1

ˆ
k kx and the Kalman gain 

at time k , respectively. 
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8.3.2 Quadrature based Gaussian approximation filters 

Assuming that the probability density function (PDF) of the states is Gaussian, the 

Gaussian approximation filters can be obtained as follows [93-95]. Note that only the 

mean and covariance need to be calculated. 

Prediction: 

| 1

1

ˆ ( )
pN

k k i i

i

W



x f  (8.11) 

     | 1 | 1 | 1 1

1

ˆ ˆ
pN

T

k k i i k k i k k k

i

W   



   P x x Qf ξ f ξ (8.12) 

where 
pN is the total number of points, iW is the point weight, and iξ is the transformed 

point obtained from the covariance decomposition, i.e. 

1| 1

T

k k  P SS

1| 1
ˆ

i i k k  Sγ xξ

(8.13) 

(8.14) 

where iγ is the quadrature point for ( ;  ;  )nN x 0 I with n as the state dimension. 

Update: 

where 

 | | 1
ˆ ˆ

k k k k k k k  x x L y z

| | 1

T

k k k k k xz P P L P

 
1

k xz k zz


 L P R P
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(8.15) 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

where iξ is the transformed point obtained from the decomposition of the predicted 

covariance, i.e. 

| 1

T

k k P SS

| 1
ˆ

i i k k Sγ xξ

(8.21) 

(8.22) 
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Note that iγ and iW can be chosen according to the Gauss-Hermite quadrature 

(GHQ) rule [93, 94], the Unscented Transformation (UT) [95]. 

For convenience, the points and weights for UT are given as follows. 

For the UT with 2 1n points [95], and are given by iγ iW

 
 

 
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1 1
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1

2
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2
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i i n i

W
n
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       



γ

γ e

γ e

，

，

(8.23) 

where 1ie is the unit vector in n
R with the (i-1)th element being 1 and  is a tuning 

parameter with the suggested optimal value 3 n   for Gaussian distributions [95]. It is 

exact for all polynomials of the form 1 2

1 2
n

n

ii ix x x with 
11 3ni i    [94]. 

For the univariate GHQ rule with m quadrature points, iγ and iW can be 

calculated as follows [93]. If 1m  , then 1 0γ and 1 1W  . If 1m  , first construct a 

symmetric tri-diagonal matrix J with zero diagonal elements and , 1 1, / 2i i i iJ J i   , 

1 1i m   . Then the quadrature point iγ is calculated by 2i iγ ε , where iε is the ith 

eigenvalue of J . The corresponding iW is calculated by  
2

1i iW  v where  
1iv is the 

first element of the ith normalized eigenvector of J . The univariate GHQ rule with m 

points is exact up to the ( 2 1m )th order of polynomials [94]. 

The multivariate GHQ rule extends the univariate m-point set to the n-

dimensional point set by the tensor product rule [93, 94]. It is exact for all polynomials of 

the form 1 2

1 2
n

n

ii ix x x with 1 2 1ji m   [94]. However, the total number of points 

n

pN m increases exponentially with the dimension n . Hence, it is hard to use for high 

dimensional problem. To alleviate this problem, the sparse Gauss-Hermite quadrature can 
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be used [96]. Conventional Gauss-Hermite quadrature is used here since the dimension of 

this problem is 3. 

Since EKF uses first order Taylor expansion to approximate the non-linear 

function, the approximation can be accurate only to the first order. But the UKF 

approximation accuracy can be up to 3
rd 

order polynomials because it uses Unscented 

Transformation. As a more advanced rule for approximation, the Gauss-Hermite 

quadrature rule used by GHQF can achieve even higher accuracy than UT. 

8.4 Experimental results 

The proposed on-line battery SOC estimation approach has been experimentally 

verified on the 6.8 Ah Ultralife UBBL10 lithium-ion battery module. For the model 

represented as (8.1) and (8.2), process noise and measurement noise are assumed to be 

white Gaussian noises and are added to the battery model. Thus for now the battery 

model with process noise and measurement noise are assumed to accurately represent the 

true system. To test the robustness of filters on starting from poor initial conditions, an 

initial value of 40% SOC was given to the models instead of the true value of 100%. The 

initial values for 
1,0

ˆ
c

V and 
2,0

ˆ
c

V are set to be 0.05 V, 0.05 V, instead of the true values 0 V, 

0 V, respectively. The initial covariance is set to be   0 diag 0.01,0.01,0.1P . The 

process noise covariance is 81*10Q  and the measurement noise is 
41*10R  . 

The SOC estimation results from one time running is shown in Fig. 8.2 with a 

detailed view in Fig. 8.3. The SOC estimation with the EKF diverged from the true SOC 

thus not plotted here.  Fig. 8.4 shows the SOC estimation errors. 
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Figure 8.2 SOC estimation results from one time running 

Figure 8.3 Detailed view of the SOC estimation in the first 20 min 
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Figure 8.4 SOC estimation errors 

The results shown in Fig. 8.5 are generated from a 50 time running, where the 

root mean square error (RMSE) is used as the criteria for comparison. From the SOC 

estimation results in Fig. 8.2 - 8.5, it can be observed that the estimated SOC quickly 

converges to the true SOC using the GHQF, and the SOC estimated using the UKF 

converges in a comparatively slower way. The errors from both GHQF and UKF quickly 

drops to 1% and stay below 0.2% in most parts. 

87 



www.manaraa.com

 

 

 

   

  

 

 

 

  

 

  

   

 

Figure 8.5 RMSE of SOC estimation from 50 times running 

8.5 Discussions 

The GHQF, EKF and UKF were introduced to the open-loop behavioral battery 

model to estimate battery SOC in realitme. The ability of the filter to self-start is tested 

by giving the model poor initial values. The results show that the GHQF is capable of 

starting with poor initial conditions and quickly converges to the true SOC. SOC 

estimations from the EKF diverged from the true SOC indicating that EKF is not capable 

of being used on the selected type of electrical analogue battery model with poor initial 

conditions. The UKF is able to start from poor initial conditions but it converges to the 

true SOC in a comparatively slower way than the GHQF. SOC estimation errors for 

GHQF and UKF remain between 0.13% - 1% of SOC in most parts, with the error from 

UKF slightly higher than that from GHQF. Therefore, when both the self-starting 

capability and estimation accuracy are considered, the GHQF excel in comparison to 

commonly reported EKF and UKF for realtime SOC estimation with the selected 
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electrical analogue battery model, because the GHQF is known to be more capable of 

handling high order polynomial based models [94, 96]. 
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CHAPTER IX 

CONCLUSIONS 

An advanced battery modeling approach aimed at large format batteries is 

reported in this dissertation. The electric circuit components in the battery model are not 

physical but behavioral. They are used as a method for approximating the battery’s 

dynamic response for use in system simulation or for embedded battery management 

systems. As a consequence, these components are convolved with the specific bandwidth 

of the data used to estimate the actual characteristics of the battery. Acknowledging the 

limited bandwidth characteristic of the model, the bandwidth related time constants of the 

RC networks in the model are determined according to the desired bandwidth of the 

battery application. Either SQP or GA can be employed to estimate the model parameters 

with the fixed time constants of the RC networks, and their performance were compared 

in the more demanding case of three RC networks. 

The reported approach was experimentally verified on an Ultralife UBBL10 14.4 

V, 6.8 Ah lithium-ion battery module with 0.41% terminal voltage estimation error. The 

robustness of the constructed battery model was verified on four battery modules of the 

same kind, with between 0.36% and 0.44% terminal voltage estimation error. When the 

modeling approach was used to model a 360 V, 21.3 kWh lithium-ion battery pack, the 

terminal voltage estimation error was observed as 1.11% under vehicle drive cycle tests, 

although this particular model did not include the benefit of the SOC-OCV profile 

correction procedure; if it had, it can be expected that less than 1% error would have been 
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observed. The battery model was scaled to 3-RC model from the 2-RC model with 

increased accuracy ranging from 0.24% to 0.38% terminal voltage estimation error, 

depending on the details of the parameter estimation algorithm used. 

The above results proved that dramatically improved battery terminal voltage 

estimation accuracy is possible when the electrical analogue battery model is used off-

line. The capability of the battery model to be used on-line for SOC estimation after the 

model parameters were extracted with the proposed method was also investigated with 

GHQF, EKF and UKF. Accurate SOC estimation results were observed when tested with 

an UBBL10 lithium-ion battery module. 

Since electrical circuit components are used in the battery model, it is ideal for 

integration with Matlab/Simulink and circuit simulation software. The reported battery 

modeling approach is independent of battery chemistries, thus making it generically 

applicable to lithium-ion, NiMH, and lead-acid batteries, among others. 
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